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Abstract This paper is concerned with classical concave cost multi-echelon
production/inventory control problems studied by W. Zangwill and others. It is
well known that the problem with m production steps and n time periods can be
solved by a dynamic programming algorithm in O(n4m) steps, which is consid-
ered as the fastest algorithm for solving this class of problems. In this paper, we
will show that an alternative 0–1 integer programming approach can solve the
same problem much faster particularly when n is large and the number of 0–1
integer variables is relatively few. This class of problems include, among others
problem with set-up cost function and piecewise linear cost function with fewer
linear pieces. The new approach can solve problems with mixed concave/convex
cost functions, which cannot be solved by dynamic programming algorithms.

Keywords Concave cost inventory control problem · Dynamic programming
algorithm · 0–1 integer programming

1 Introduction

Concave cost production and inventory control problem under deterministic
demands is one of the classical and well studied problems in operations research.
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The first such result is reported in the pioneering work by Wagner and Whitin
(1958), where an efficient dynamic programming algorithm is proposed.

Among a number of extensions of this model, the best known is the multi-
echelon problem studied by Zangwill (1968, 1969). He developed a dynamic
programming algorithm by exploiting a nice structure of the extreme flow of the
associated single source rectangular network flow problem. The problem with
m production stages over n time periods can be solved in O(n4m) steps using
dynamic programming recursion. Note that Zangwill’s algorithm is virtually the
only polynomial time algorithm for concave minimization problems and that it
is considered as the most efficient algorithm for solving this problem.

This algorithm has been extended by a number of authors. For example,
one of the authors studied the problem with backlog of demands and delay in
production process (Konno 1973, 1988). It is shown that these problems can
also be solved in O(n4m) steps. Further, Zangwill (1969) developed an O(n3m)

algorithm for the problem with monotone cost structure . Also, Love studied
another special class with nested demands (Love 1973). Readers are referred
to Bitran et al. (1984) for further references in this area.

It is well known that concave cost network flow problems and even a general
nonlinear cost network flow problems can be solved by piecewise linear approxi-
mation strategy by introducing a number of 0–1 integer variables (Dantzig 1959;
Padberg 2000; Sherali 2001; Wolsey 1998). However, this method has been con-
sidered impractical since it was very difficult to solve the resulting mixed 0–1
integer programming problem until recently. However, due to the remarkable
progress in integer programming methodologies, we can now solve a fairly large
scale concave cost network flow problems using powerful state-of-the-art soft-
ware. For example, we showed in Konno and Egawa (2006) that a large scale
concave cost network flow problem over a bipartite network can be solved
to optimality remerkably fast. In fact, it is an order of magnitude faster than
the state-of-the-art branch and bound algorithm based upon hyper-rectangular
subdivision strategy (Phong et al. 1995). This success motivated us to compare
the dynamic programming (DP) algorithm and 0–1 integer programming (IP)
approach for concave cost production/inventory control problem.

We will show that IP approach is faster for problem with set-up cost type
function or piecewise concave functions with fewer linear pieces, where we need
to introduce relatively few 0–1 integer variables. IP approach becomes more
efficient for problems with larger n. Also, we will show that we can solve mixed
cost problem which cannot be solved by DP algorithm. These problems include
among others problems with convex backlog cost.

In the next two sections, we will briefly explain the multi-echelon produc-
tion/inventory control problem and present dynamic programming algorithm
for concave cost problems. Section 4 will be devoted to the description of inte-
ger programming algorithm. In Sect. 5, we present the results of computational
experiments using DP algorithm and IP algorithm on a variety of test problems.
It will be shown that IP algorithm outperforms DP algorithm for problems
with piecewise linear concave cost functions with fewer linear pieces, while DP
performs better for problems with general concave cost functions.
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Fig. 1 Series production system

2 Network flow formulation of multi-echelon model

Let us consider a series production/inventory system depicted in Fig. 1.
Let us assume that there are m facilities where products processed at facility k is
sent to facility k+1 for further processing or held as inventory for processing in
the later period. Final products will be released to the market to fill the demand
of amount ri at period i. Let us consider the minimal cost production/inventory
control problem over n periods.

Let xk
i , yk

i be, respectively, the amount of processing and inventory at facility
k in period i and let ck

i (xk
i ) and hk

i (yk
i ) be the corresponding processing and

holding cost. Also, let wi be the amount of backlogged demand at period i and
pi(wi) be the cost associated with wi. We will assume that the item processed at
period i at facility k can be sent to facility k+1 only at the beginning of period i.

Therefore, the minimal cost production/inventory control problem can be
formulated as follows.

minimize z =
n∑

i=1

[
m∑

k=1

{ck
i (xk

i ) + hk
i (yk

i )} + pi(wi)

]

subject to y0
i = y0

i−1 − x1
i , 1 ≤ i ≤ n − 1

yk
i = xk

i + yk
i−1 − xk+1

i , 1 ≤ i ≤, n, 1 ≤ k ≤ m − 1
ym

i = xm
i + ym

i−1 + wi − wi−1 − ri, 1 ≤ i ≤ n
xk+1

i ≤ yk
i−1, 2 ≤ i ≤ n, 1 ≤ k ≤ m − 1

xk
i ≥ 0, yk

i ≥ 0, 1 ≤ i ≤ n, 1 ≤ k ≤ m
yk

0 = 0, 1 ≤ k ≤ m

y0
0 =

n∑

i=1

ri

wi ≥ 0, 1 ≤ i ≤ n − 1
wn = 0.

(1)

This problem can be interpreted as a minimal cost network flow problem on a
single source network depicted in Fig. 2 (see Konno 1988 for details).

3 Concave cost problems and dynamic programming algorithm

Let us assume that ck
i (·), hk

i (·) and pi(·) are nondecreasing concave function for
all i and k. Then there exists an optimal solution among extreme flows, i.e., flows
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Fig. 2 Network representation of the problem (n, m) = (7, 4)

without cycles. As a result, optimal flow f on certain arc can be represented as
the sum of demands ri for certain number consecutive periods (since no two
flows can merge). Based on these observation the following DP algorithm can
generate an optimal solution.

Let f k
i (α, β) be the minimal cost for sending the flow of amount Rβ

α ≡ ∑β
i=α ri

to node (m, α), (m, α + 1), . . . , (m, β) from node (k, l).

Algorithm DP

(i) k = m:

f m
i (α, β) =

i−1∑

l=α

pl(R
l
α) +

β∑

l=i+1

hm
l (Rβ

l ),

1 ≤ α ≤ i ≤ β ≤ n, m ≤ i ≤ n. (2)

(ii) 1 ≤ k ≤ m − 1:

f k
i′ (α, β) = min

α−1≤γ≤β
{ck+1

i+1 (Rγ
α ) + f k+1

i+1 (α, γ ) + f k
i+1(γ + 1, β)},

k ≤ i < n − m + k (3)

f k
(n−m+k)′(α, n) = ck+1

n−m+k+1(R
n
α) + f k+1

n−m+k+1(α, n) (4)
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f k
i (α, β) = hk

i (Rβ
α) + f k

i′ (α, β), k ≤ i < n − m + k (5)

f k
n−m+k(α, n) = hk

n−m+k(Rn
α) + f k

(n−m+k)′(α, n), 1 ≤ α ≤ β ≤ n. (6)

(iii) k = 0:

f 0
i (α, β) = min

α−1≤γ≤β
{c1

i (R
1
α) + f 1

i (α, γ ) + f 0
i (γ + 1, β)},

1 ≤ i ≤ n − m + k − 1, 1 ≤ α ≤ β ≤ n (7)

f 0
n−m+k(n, n) = f 1

n−m+k(n, n). (8)

It is easy to see that O(n4m) arithmetic operations are required to obtain the
minimum value of objective function of (1), i.e., f 0

1 (1, n).

4 Integer programming approach for nonlinear network flow problem

When the cost function is piecewise linear, the problem can be reformulated
as a mixed 0–1 integer programming problems by introducing a number of 0–1
variables (Dantzig 1959; Padberg 2000; Sherali 2001). For example, if c(·) is
piecewise linear with three linear pieces (Fig. 3), then it can be represented as
a linear function as follows:

c(ξ) = c1λ1 + c2λ2 + c3λ3 (9)

ξ = ξ1λ1 + ξ2λ2 + ξ3λ3 (10)

λ0 + λ1 + λ2 + λ3 = 1 (11)

φ1 + φ2 + φ3 = 1 (12)

λ0 ≤ φ1 (13)

λ1 ≤ φ1 + φ2 (14)

λ2 ≤ φ2 + φ3 (15)

λ3 ≤ φ3 (16)

λk ≥ 0, k = 0, 1, 2, 3 (17)

φk = 0 or 1, k = 1, 2, 3 (18)

Also, a general nonlinear function can be approximated by a piecewise linear
function within a required precision. It has been demonstrated in Konno et al.
(2006) that following successive piecewise linear approximation scheme works
well for concave cost bipartite network flow problems.

This scheme is due to Dantzig (1959). Alternative schemes are proposed
by Padberg (2000) and Sherali (2001), which are claimed to be superior to
Dantzig’s scheme above. However, a number of experiments on portfolio opti-
mization problem under concave transaction costs (Konno et al. 2006) show
that Dantzig’s scheme performs best.
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Fig. 3 Piecewise linear cost
function

Successive piecewise linear approximation strategy

Let c̃k
i (xk

i ), h̃k
i (yk

i ), p̃i(wi) be a piecewise linear approximation of ck
i (xk

i ), hk
i (yk

i ),
pi(wi), respectively using subdivision of intervals under consideration. We solve
the resulting linear programming problem containing 0–1 variables and let x̃k

i ,
ỹk

i and w̃i be its optimal solutions. If the sum of discrepancies

n∑

i=1

[
m∑

k=1

{(
ck

i (x̃k
i ) − c̃k

i (x̃k
i )

)
+

(
hk

i (ỹk
i ) − h̃k

i (ỹk
i )

)}
+ (

pi(w̃i) − p̃i(w̃i)
)
]

/

n∑

i=1

[
m∑

k=1

{
ck

i (x̃k
i ) + hk

i (ỹk
i )

}
+ pi(w̃i)

]
(19)

is less than ε(>0), then the calculated solution is an ε-optimal solution. If not,
we generate a finer mesh around the current optimal solution and solve the
problem and continue this process until the required precision is attained.

There is no guarantee that this process always generates an ε-optimal solu-
tion, but our numerical experiments show that the solution obtained by this
method never fails to converge to an optimal solution calculated by DP algo-
rithm.

Among several possible subdivision strategies, the following strategy per-
forms best.

Subdivision strategy

Let f1(x) be a linear underestimator of a concave function f (x) over [0, a] and
let

ξ1 = argmin
0≤x≤a

{f (x) − f1(x)}. (20)
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Fig. 4 Subdivision Strategy
for a concave function

We subdivide [0, a] into subintervals [0, ξ1], [ξ1, a]. Let f2(x), f3(x) be linear
underestimator of f (x) over [0, ξ1], [ξ1, a], respectively.

We choose either one of the points

x2 = argmin
0≤x≤ξ1

{f (x) − f2(x)} (21)

x3 = argmin
ξ1≤x≤a

{f (x) − f3(x)}, (22)

whichever the associated discrepancy is larger as the next subdivision point and
continue (see Fig. 4).

5 Computational results

We conducted numerical experiments using DP algorithm and IP algorithm
using PentiumIV (512 Mbyte, 2.8 GHz) personal computer. We used CPLEX8.0
for solving IP problems.

(1) Production cost: ck
i (x)

We considered three different types of functions (a)∼(c).
(a) Set-up type cost (Fig. 5a)

ck
i (x) =

{
ak

i x + bk
i if x > 0

0 otherwise
(23)

(b) Piecewise linear concave function with three linear pieces (Fig. 5b)

ck
i (x) =

⎧
⎨

⎩

a1k
i x + b1k

i if 0 ≤ x ≤ x1
a2k

i x + b2k
i if x1 ≤ x ≤ x2

a3k
i x + b3k

i otherwise
(24)
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(a) (b) (c)

Fig. 5 Production cost function

Table 1 Data types Type Production cost Holding cost Backlog cost

I Set-up Linear Linear
II Piecewise linear Linear Linear
III Concave Linear Linear
IV Concave Linear Convex

Fig. 6 Average CPU time of Type I problems (dotted line shows maximum and minimum of
computation time)

(c) General concave function (Fig. 5c)

ck
i (x) = xaik , (0 < aik < 1.0) (25)

We conducted computational tests for three different combinations of cost
functions listed in Table 1.

We generated ten test problems for each combination of (n, m) using ran-
domly generated demand sequence ri’s. Number of 0–1 integer variables of
integer programming formulation for Type I, II problems are m(n − m − 1) and
3m(n−m−1), respectively. For Type III problem, we apply successive piecewise
linear approximation scheme of Sect. 4 to calculate an approximately optimal
solution. At each iteration of this procedure we need to introduce 5m(n−m−1)

zero-one integer variables.
We see from Fig. 6 that IP algorithm is more than ten times faster than DP

algorithm on the average. On the other hand, computation time of IP algorithm
is dependent on data, but it is almost always faster than DP algorithm.
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Fig. 7 Average CPU time of Type II problems (dotted line shows maximum and minimum of
computation time)

For Type II problems, DP is somewhat faster than IP for smaller problems.
However, IP is more than five times faster when (n, m) = (40, 15) in spite of
the fact that we have to handle problem with over one thousand 0–1 variables
(Fig. 7).

To solve Type III problems by IP, we introduced five subdivision point for
each concave arc and applied successive approximation scheme until using
ε = 10−4.

We see from Fig. 8 that DP algorithm outperforms IP for smaller (n, m)’s as
expected. However, IP algorithm becomes more efficient when (n, m) is larger.

Finally, we solved Type IV problem using DP and IP algorithms. DP algorithm
need not generate an optimal solution of the problem (1). For IP algorithm we
used successive piecewise linear approximation of convex function and solved
the resulting 0–1 integer programming problem. Note that we do not have to
introduce 0–1 integer variables for approximating convex functions. Computa-
tion time for resulting 0-1 integer programming problems is more or less the
same as Type II problems. Also, we see from Fig. 9 and 10 that DP algorithm
fails to generate an optimal solution.

6 Conclusions

We showed in this paper that integer programming algorithm can solve a large
scale concave cost production/inventory control problems much faster than
dynamic programming algorithm when n, the number of planning periods is
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Fig. 8 Average CPU time of Type III problems (dotted line shows maximum and minimum of
computation time)

Fig. 9 Solution obtained by
IP

large and cost function is either set up type function or piecewise linear func-
tion with fewer linear pieces.

If, on the other hand the majority of cost functions are general concave func-
tions, then DP algorithm would outperform IP algorithm since the computation
time of DP algorithm depends on the size of the problem, while IP algorithm
depends on the number of 0–1 variables.

We showed in additions that IP approach can be successfully applied to gen-
eral piecewise linear cost functions, not necessarily concave, while DP algorithm
fails to generate an optimal solution.
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Fig. 10 Solution obtained by
DP
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